Code No: 45014

R07

Set No - 4

III B.Tech I Semester Regular Examinations,Nov/Dec 2009 Formal Languages and Automata Theory Computer Science And Engineering

Time: 3 hours

Max Marks: 80

[16]

[16]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Design Turing Machine for $L = \{ a^n b^n c^n \mid n \ge 1 \}$
- 2. (a) Prove the following identity: $(a^*ab + ba)^* a^* = (a + ab + ba)^*$
 - (b) Construct transition systems equivalent to the regular expression $(ab + a)^* (aa + b)$ [8+8]
- 3. (a) If G=({S}, {0, 1}, {S \to 0S1, S \to ε }, S), find L(G). (b) Construct a G so that L(G) = {aⁿba^m | m,n >= 1} [8+8]
- 4. Design Push Down Automata for the language L={ww^R | w ε (0+1)*} [16]
- 5. Convert the following Context Free Grammar to Greibach Normal Form $G = \{(\{S,A,B\},\{a,b\},P,S)\}$
 - P is $S \rightarrow AB$
 - $A \rightarrow BS / a$
 - $B \rightarrow SA / b$
- (a) Find NFA which accepts the set of all strings over {0,1} in which the number of occurances of 0 is divisible by 3 and the number of occurances of 1 is divisible by 2.
 - (b) Draw the transition diagram for a NFA which accepts all strings with either two consecutive 0's or two consecutive 1's.
 - (c) Differentiate NFA and DFA. [6+6+4]
- 7. (a) Write the steps in construction of minimum automaton.
 - (b) Write the applications of Finite Automata.
 - (c) Define NFA with ε -moves. [8+6+2]
- 8. Write about the following
 - (a) Linear-Bounded Automata
 - (b) Context-Sensitive Language
 - (c) Decidability of PCP. [5+5+6]
